Interatomic Distances and Atomic Valences in NaZn_{13} *

By David P. Shoemaker \dagger, Richard E. Marsh, Fred J. Ewing and Linus Pauling
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena 4, California, U.S.A.

(Received 28 January 1952)

Abstract

The crystal structure of NaZn_{13} and of several homologous compounds $A B_{13}$ was reported by Ketelaar and by Zintl \& Hauke to be based on space group $O_{h}^{6}-F m 3 c$, with 8 Na in $8(a)$: $\frac{1}{4}, \frac{1}{4}, \frac{1}{4} ; \ldots ; 8 \mathrm{Zn}_{\mathrm{I}}$ in $8(b): 0,0,0 ; \ldots$; and $96 \mathrm{Zn}_{\text {II }}$ in $96(i): 0, y, z ; \ldots$ Approximate values were reported for the parameters a_{0}, y, and z; for NaZn_{13} Zintl \& Hauke reported $12 \cdot 27 \AA, 0 \cdot 178$, and $0 \cdot 122$ for these three parameters. Each Zn_{I} is surrounded by twelve $\mathrm{Zn} n_{I I}$ at the vertices of a nearly regular icosahedron, and each Na by twenty-four $\mathrm{Zn}_{\text {II }}$ at the vertices of a snub cube. Our interest in the structure was largely concerned with the valences of the two different kinds of Zn atoms, it being presumptive that Zn I has a larger valence than $\mathrm{Zn}_{\text {II }}$ because its icosahedral coordination requires it to be smaller than $\mathrm{Zn}_{\text {II }}$. Lines on new powder photographs of NaZn_{13} were measured and the intensities were estimated visually with as much precision as possible. Least-squares treatments were employed in order to obtain the best possible values for the three parameters; the values obtained are $a_{0}=12 \cdot 2836 \pm 0 \cdot 0003 \AA, y=0 \cdot 1806 \pm 0 \cdot 0003$, and $z=0 \cdot 1192 \pm 0 \cdot 0003$. The uncertainties given are calculated standard deviations. Analysis of the interatomic distances yields a selfconsistent interpretation in which Zn_{I} is assumed to be quinquevalent and Zn II quadrivalent, while Na may have a valence of unity or one as high as $1 \frac{1}{4}$, the excess over unity being suggested by the interatomic distances and being, if real, presumably a consequence of electron transfer. A valence electron number of approximately 432 per unit cell is obtained, which is in good agreement with the value 428.48 predicted on the basis of a filled Brillouin polyhedron defined by the forms $\{444\},\{640\}$, and $\{800\}$.

Introduction

Some years ago Ketelaar (1937) reported a tentative structure for NaZn_{13} and five other $A B_{13}$ compounds $\left(\mathrm{KZn}_{13}, \mathrm{KCd}_{13}, \mathrm{CaZn}_{13}, \mathrm{SrZn}_{13}\right.$, and $\left.\mathrm{BaZn}_{13}\right)$. Zintl \& Hauke (1937) reported the same structure for NaZn_{13} and two other compounds $\left(\mathrm{KZn}_{13}\right.$ and $\left.\mathrm{KCd}_{13}\right)$, and later (1938) for two more (RbCd_{13} and $\left.\mathrm{CsCd}_{13}\right)$. The structure is based on a face-centered cubic lattice. The space group is $O_{h}^{6}-F m 3 c$, with (e.g. for NaZn_{13}) eight Na in $8(a): \frac{1}{4}, \frac{1}{4}, \frac{1}{4} ; \ldots$; eight Zn_{I} in $8(b)$: $0,0,0 ; \ldots$; and ninety-six $\mathrm{Zn}_{\mathrm{II}}$ in $96(i): 0, y, z ; \ldots$ The parameters obtained by these workers are summarized in Table 1.
Zintl \& Hauke cited no limits of error, but Ketelaar cited an uncertainty of $0.005 \AA$ for a_{0} and an uncertainty of 0.003 in y and z. From comparisons among the intensities obtained for the five compounds that they investigated, Zintl \& Hauke concluded that the y and z parameters are substantially the same for all five.

One of the features of this structure is that the

[^0]Table 1. Parameters obtained in previous work on compounds of type $A B_{13}$

Compound	Ketelaar				Zintl \& Hauke		
	$a_{0}{ }^{*}$	y	z	$a_{0}{ }^{*}$	y	z	
NaZn_{13}	12.255	-	-	12.27	0.178	0.122	
KZn_{13}	12.335	-	-	12.36	-	-	
KCd_{13}	13.785	0.183	0.117	13.77	-	-	
CaZn_{13}	12.13	-	-	-	-	-	
SrZn_{13}	12.215	-	-	-	-	-	
BaZn_{13}	12.33	-	-	-	-	-	
RbCd_{13}	-	-	-	13.88	-	-	
CsCd_{13}	-	-	-	13.89	-	-	

* Values for a_{0} are apparently given in kX . units; Zintl \& Hauke give $\lambda=1.539$ for $\mathrm{Cu} K \alpha$, and 1.537 and 1.541 for the two components.
Zn_{I} (or Cd_{I}) at $0,0,0$ is surrounded by twelve $\mathrm{Zn}_{\text {II }}$ at the vertices of a nearly regular icosahedron. The $\mathrm{Zn}_{\mathrm{I}}-\mathrm{Zn}_{\text {II }}$ distance is accordingly substantially smaller than the average $\mathrm{Zn}_{\amalg}-\mathrm{Zn}_{\Pi}$ distance. If the icosahedron were regular the ratio of the radial distance to the edge distance would be 0.951 . The observed radial distances ($2.65 \AA$ in $\mathrm{NaZn}_{13}, 2.99 \AA$ in KCd_{13}) are in good agreement with the short distances in elementary zinc ($2 \cdot 660 \AA$) and cadmium ($2 \cdot 973 \AA$), to which have been assigned bond numbers of one-half (Pauling, 1947, 1949). This suggests that the atom at $0,0,0$ forms twelve one-half bonds, and hence has a valence of six rather than the usual valence of 4.5 or 4 .

The present investigation was undertaken in order
to provide unit-cell and positional parameters and interatomic distances for NaZn_{13} with sufficient precision for a satisfactory interpretation of this structure in terms of atomic valence and bond numbers.

Experimental 'method

Samples of NaZn_{13} were prepared by heating zinc with a calculated excess of sodium in alundum extraction thimbles contained in a steel bomb sealed with copper gaskets. The bomb was filled with nitrogen or argon before being sealed, and was heated for several hours above the melting point of NaZn_{13} (557° C.). The bomb was cooled and opened, and the excess of sodium was removed by extraction with anhydrous liquid ammonia. The materials were kept under dry paraffin oil until used. Samples of KCd_{13} and KZn_{13} were prepared in the same way.

Specimens for powder photography were prepared by grinding the materials in dry paraffin oil and drawing the resulting slurry into thin-walled pyrex capillary tubes about $\frac{1}{4} \mathrm{~mm}$. in diameter. Powder photographs were taken with nickel-filtered $\mathrm{Cu} K \alpha$ radiation in a Straumanis-type Philips powder camera of nominal radius 57.30 mm . This camera had been constructed with sufficient precision to preclude eccentricity errors, and indeed analysis of powder data obtained with this camera has shown that eccentricity errors are negligibly small. In the case of NaZn_{13} each exposure was made with two superimposed Eastman No-Screen Dupli-tized X-ray films in the camera; two exposures were made, with exposure times of 2.50 and 9.25 hr . at 20 mA . The ratio of these exposure times is $3 \cdot 7$, which is equal to the assumed film factor for $\mathrm{Cu} K \alpha$ radiation. This value of the film factor, which is the factor by which the intensity of the radiation is decreased on passing normally through a single film, was determined at the Eastman Kodak Company laboratories (H. E. Seemann, private communication). One heavily exposed film, two moderately and substantially identically exposed films, and one weakly exposed film were thus obtained, enabling a check to be made on the film factor, which was found to be 3.7 within experimental error.

The relative positions of the lines on the photographs were determined with use of a steel millimeter scale. The intensities of the lines on the NaZn_{13} photographs were determined visually, by the multiple-film technique, with the use of no external standards.

Determination of the lattice constant

Reciprocal spacings ($\left.1 / d_{h k l}=q_{h k l}=(2 \sin \theta) / \lambda\right)$ were calculated from the positions of the powder lines, and the lines were indexed on the basis of a face-centered cubic lattice. Analysis of a few lines in the backreflection region gave a preliminary value of 0.081409 \AA^{-1} for $1 / a_{0}$. A refinement of $1 / a_{0}$ was carried out by
the method of least squares (Whittaker \& Robinson, 1937), with the introduction of an absorption parameter K in conjunction with the absorption function of Nelson \& Riley (1945). The observational equations were of the form

$$
\begin{gather*}
\left(V w_{i}\right) \frac{d q_{i}}{d\left(1 / a_{0}\right)} \Delta\left(1 / a_{0}\right)+\left(V w_{i}\right) q_{i} \cdot \frac{1}{2}\left(\frac{\cos ^{2} \theta_{i}}{\sin \theta_{i}}+\frac{\cos ^{2} \theta_{i}}{\theta_{i}}\right) K \\
=\left(V w_{i}\right)\left(q_{i}^{\text {obs. }}-q_{i}^{\text {calc. }}\right) \tag{1}
\end{gather*}
$$

where $\Delta\left(1 / a_{0}\right)$ and K are the parameters to be solved for, q_{i} is the reciprocal spacing of the i th line, and w_{i} is the weight assigned to the i th line. The coefficient of K contains, besides w_{i}, the absorption function of Nelson \& Riley. The weight w_{i} was taken as

$$
\begin{equation*}
w_{i}=w_{i}^{\prime} / \cos ^{2} \theta_{i} \tag{2}
\end{equation*}
$$

where w_{i}^{\prime} is an auxiliary weight depending on the physical characteristics of the line and has been given arbitrary values ranging from 1 to 4 . The derivative in equation (1) is

$$
\begin{equation*}
\frac{d q_{i}}{d\left(1 / a_{0}\right)}=V\left(h_{i}^{2}+k_{i}^{2}+l_{i}^{2}\right) \tag{3}
\end{equation*}
$$

The two normal equations were obtained in the usual way and solved for the two parameters. The results are

$$
\begin{aligned}
& a_{0}=12.2836 \pm 0.0003 \AA \\
& K=1.35 \times 10^{-4} \pm 2.34 \times 10^{-4},
\end{aligned}
$$

($\lambda=1.5418 \AA$ for unresolved $C u K \alpha ; 1.54050$ for α_{1}; 1.54434 for α_{2}) where the uncertainties are standard deviations as determined from the residuals and the coefficients of the normal equations (Whittaker \& Robinson, 1937). The absorption parameter K is positive, as it should be, but the value given is evidently not significant. The precision of the latticeparameter determination corresponds to one part in forty thousand. This precision is higher than needed for our purpose, and is not especially significant, as the ambient temperature during photography is not precisely known, the photograph having been taken at room temperature (about $25^{\circ} \mathrm{C}$.). The high precision that is obtainable with this experimental and computational technique justifies accurate knowledge of the temperature at which the exposure is made.
In Table 2 there are given data pertinent to the lattice-parameter determination, as well as intensity data used in the determination of atomic positional parameters.

Determination of atomic positional parameters

The parameters reported by Zintl \& Hauke were taken as the starting point of the parameter determination. Using these parameters, structure factors were calculated for all of the planes in the sphere of reflection. The atomic form factors of James \& Brindley (1935) were used. (Subsequent calculations made with two

Table 2. Reciprocal spacings and intensity data for NaZn_{13}

Table 2 (cont.)

hkl	w^{\prime}	$q_{\text {obs }}$	$\begin{gathered} \Delta q \\ \left(\times 10^{4}\right) \end{gathered}$	$w^{\prime \prime}$	$\boldsymbol{F}_{\text {calce }}$.	$\begin{gathered} G_{\text {calc. }}^{2} \\ \left(\times 10^{-2}\right) \end{gathered}$	$\begin{aligned} & G_{\text {obs. }}^{2} \\ & \left(\times 10^{-2}\right) \end{aligned}$	$\begin{gathered} \Delta G^{2} \\ \left(\times 10^{-2}\right) \end{gathered}$
12,4,0	1	1-0297	-0.6	4	-39.5	151	158	7
$\{12,4,2\}$					$(39 \cdot 2)$			
$\left\{\begin{array}{r}10,8,0 \\ 886\end{array}\right\}$	2	1.0424	-1.5	4	$\left\{\begin{array}{l}33 \cdot 1 \\ 18.9\end{array}\right\}$	427	450	23
1088,2	-	-	-	-	$[18 \cdot 9$ -7.1	10	< 91	-
11,7,1	-	-	-	-	-21.7	86	<103	
10,6,6	-	-	-	-	13.3	16	<102	-
12,4,4	-			-	$10 \cdot 3$	9	<87	-
$\left\{\begin{array}{l}13,3,1 \\ 11,3,3\end{array}\right\}$	4	1-0891	-0.9	6	$\left\{\begin{array}{r}-30.2 \\ 61.5\end{array}\right\}$	818	861	43
[11,7,3\}								
$\left\{\begin{array}{l}12,6,0 \\ 10,4,4\end{array}\right\}$						87	<114	
$\xrightarrow{12,6,4} \mathbf{1 0 , 4}$	-	-	-	-	$\left\{\begin{array}{c}21.4 \\ 18.0\end{array}\right.$	87	<114 <95	-
$\begin{array}{r} 12,6,2 \\ 888 \end{array}$	2	1-1282	1.6	$\overline{6}$	18.0 -142.8	55 549	$<$ 910	-39
$\{13,5,1\}$	3	1-1369	$0 \cdot 8$	3	\{66.8\}			-47
\{11,7,5\}	3	$1 \cdot 1369$		3	\{19.3\}	768	721	-47
$\left\{\begin{array}{l}14,0,0 \\ 12,6,4\end{array}\right\}$	1	1-1400	$2 \cdot 7$	1	$\left\{\begin{array}{l}-18.2 \\ -51.1\end{array}\right\}$	417	428	11
$\left(\begin{array}{c}12,6,4\} \\ 14,2,0 \\ 10,\end{array}\right.$	1	11400	2.7	1	$\left\{\begin{array}{l}-51 \cdot 1\} \\ -34 \cdot 1\end{array}\right.$	417	428	11
$\left\{\begin{array}{r}14,2,0 \\ 10,10,0 \\ 10,8,6\end{array}\right\}$	4	$1 \cdot 1514$	1.0	6	$\left\{\begin{array}{r}-34 \cdot 1 \\ 68.6\end{array}\right\}$	774	742	-32
(10,8,6					57.1)			
$\{13,5,3\}$	2	1-1598	-1.1	4	$\left\{\begin{array}{c}15.0 \\ \hline\end{array}\right.$			
$\{11,9,1\}$		$1 \cdot 1598$	-11	4	$\{-34 \cdot 2\}$	211	202	
$\left\{\begin{array}{r}14,2,2 \\ 10,10,2 \\ 12\end{array}\right\}$	-	-		-	$\left\{\begin{array}{c}21.6 \\ 5.4\end{array}\right\}$	37	< 91	
$10,10,2$ $12,8,0$	2	1-1744	$3 \cdot 0$	4	$\left[\begin{array}{c}5 \cdot 4 \\ 47.0\end{array}\right.$	37 163	$\begin{array}{r}< \\ \\ \hline 96\end{array}$	33
11,9,3	3	1-1824	-1.4	2	86.0	1073	1002	-71
$\{14,4,0\}$	1	1-1851	$-2 \cdot 4$	1	$\{-36 \cdot 2\}$	417	436	19
\{12,8,2\}			-2.4		\{ 47.2\}	417	436	19
$\left\{\begin{array}{l}14,4,2 \\ 12,6,6 \\ 0,6,4\end{array}\right.$	4	1-1964	-0.7	6	$\left\{\begin{array}{r}75 \cdot 3 \\ -44 \cdot 0\end{array}\right\}$			
$\left\{\begin{array}{c}10,6,6 \\ 10,10,4\end{array}\right\}$	4	$1 \cdot 1964$	-0.7	6	$\left\{\begin{array}{r}-4.4 . \\ 2 \cdot 6\end{array}\right\}$	940	852	-88
13,7,1	-	-	-	-	-18.5	48	< 65	-
12,8,4	4	1.2184	-0.3	6	69.7	655	587	-68
$\{13,7,3\}$	2	1-2269	$3 \cdot 4$	3	$\left\{\begin{array}{c}20 \cdot 8 \\ 28.8\end{array}\right\}$	164	203	39
$\{11,9,5\}$		$1 \cdot 2269$	$3 \cdot 4$	3	$\left\{\begin{array}{c}28.6 \\ 81.5 \\ -41.9\end{array}\right\}$			
$\left\{\begin{array}{l}14,4,4 \\ 10,8,8\end{array}\right\}$	3	1.2293	0.4	1	$\left\{\begin{array}{r}81.5 \\ -41.9\end{array}\right\}$	552	525	-27
14,6,0	-	-	-	-	-11.0	8	<48	-
15,3,1	-	-	-	-	6.5	4	<44	-
$\left\{\begin{array}{c}14,6,2 \\ 10,10,6\end{array}\right.$	2	1.2507	0.6	0	$\left\{\begin{array}{l} 16 \cdot 6\} \\ 30 \cdot 2 \end{array}\right.$	92	72	-20
$\begin{gathered} \{10,10,6\} \\ 13,7,5 \end{gathered}$	2	1.2689	1.6 -1.5	0	$130 \cdot 2\}$ -55.6	92 375	72 234	-20 -141
$\{12,10,0\}$	3	$1 \cdot 2716$	-0.6	0		328	253	-75
$\left\{\begin{array}{l}12,8,6\} \\ 14,6,4 \\ 12,0,2\end{array}\right.$					$\left\{\begin{array}{c}51 \cdot 1\} \\ 19.0\end{array}\right.$			
$\left\{\begin{array}{l}12,10,4 \\ 12,10,2\end{array}\right.$	3	1.2821	$0 \cdot 6$	0	$\left\{\begin{array}{l}19.0 \\ 25.9\end{array}\right.$	122	99	-23
(15,5,1					34.9			
13,9,1	3	1-2897	-0.8	0	$\{-57.6$	526	229	-297
(11,9,7)					--3.3)			

electrons subtracted from the form factor for zinc at all angles to take account of the tight binding of K-shell electrons with $\mathrm{Cu} K x$ radiation changed significantly only the scale and temperature parameters.) The structure factors were calculated on the basis of one-eighth of a unit cell. Structure-factor derivatives were also calculated, and a least-squares treatment was carried out, giving $y=0 \cdot 1797, z=0 \cdot 1193$.

However, an error was made in the application of the temperature factor, which resulted in incorrect weights; therefore the structure factors and their derivatives were recalculated on the basis of these parameters and a second least-squares treatment was carried out as described below.

Since many of the powder lines are incapable of resolution into their component reflections, a least-
squares refinement with respect to the structure factors themselves is inappropriate. The refinement was therefore carried out with respect to quantities G^{2}, defined as follows:

$$
\begin{gather*}
G_{i}^{2}(\text { calc. })=t_{i}^{2} \sum_{j} m_{j}\left(F_{j}^{\text {calc. }}\right)^{2}, \tag{4}\\
G_{i}^{2}(\text { obs. })=I_{i}^{\text {obs. } / k L P}, \tag{5}\\
\Delta G_{i}^{2}=G_{i}^{2}(\text { obs. })-G_{i}^{2}(\text { calc. }), \tag{6}
\end{gather*}
$$

where

$$
\begin{equation*}
t_{i}=\exp \left[-B\left(\sin \theta_{i} / \lambda\right)^{2}\right] \tag{7}
\end{equation*}
$$

is the temperature factor, m_{j} is the multiplicity of the j th form present in the line, L and P are the Lorentz and polarization factors, and k is a scale factor. The observational equations were of the form

$$
\begin{equation*}
\left(\downarrow w_{i}\right) \frac{\partial G_{i}^{2} \text { (calc.) }}{\partial y} \Delta y+\left(\downarrow w_{i}\right) \frac{\partial G_{i}^{2} \text { (calc.) }}{\partial z} \Delta z=\left(\vee w_{i}\right) \Delta G_{i}^{2} \tag{8}
\end{equation*}
$$

for each observed line i, where w_{i} is the weight of the measurement of intensity for line i and is defined as follows:

$$
\left.\begin{array}{l}
w_{i}=\frac{w_{i}^{\prime \prime}}{\left(G^{2}(\mathrm{obs} .)\right)^{2}}, \quad G_{i}^{2}(\mathrm{obs} .) \geq 4 G_{\min .}^{2} . \\
w_{i}=\frac{w_{i}^{\prime \prime}}{4 G_{i}^{2}(\mathrm{obs} .) G_{\min .}^{2}}, \quad 4 G_{\min .}^{2} \geq G_{i}^{2}(\mathrm{obs} .) \geq G_{\min .}^{2} \tag{9}
\end{array}\right\}
$$

where $G_{\text {min. }}^{2}$ is the value of $I / k L P$ for the weakest observable line in the neighborhood of the line in question and $w^{\prime \prime}$, like w^{\prime}, is an auxiliary weight depending as objectively as possible on physical characteristics of the line which affect the ease of estimating its intensity. For a normal line a value of 4 was assigned to $w^{\prime \prime}$. A line which was well resolved into its two components was given a $w^{\prime \prime}$ not of 8 , but rather of 6 in consideration of the increased difficulty of estimating each component. Values of 1 or 2 were assigned to poorly resolved lines. The leastsquares procedure and the procedure of assigning weights are similar to those of Hughes (1941), except that in the weighting procedure of Hughes equations (9) would contain the number 16 rather than the number 4.

The temperature-factor parameter B and the scale factor k were determined by a least-squares procedure, with observational equations set up in logarithmic form and with weights obtained from those in equation (9) by multiplying by $\left(G_{i}^{2}\right.$ (obs. $\left.)\right)^{2}$. Since a semilogarithmic plot of G_{i}^{2} (obs.) $/ G_{i}^{2}$ (calc.) against B showed a pronounced deviation from linearity for the last five lines, these lines were omitted from the subsequent treatments. They were much broader than the others, and apparently their intensities were underestimated. The temperature-factor parameter B was found by this treatment to have the value $1 \cdot 47 \AA^{2}$.

Fifty-two observational equations were set up and reduced in the usual way to two normal equations,
which were solved for Δy and Δz. The resulting final values of the positional parameters y and z are

$$
\begin{aligned}
& y=0 \cdot 18063 \pm 0 \cdot 00025 \\
& z=0 \cdot 11924 \pm 0 \cdot 00028
\end{aligned}
$$

The uncertainties are standard deviations, calculated in the appropriate manner (Whittaker \& Robinson, 1937).

The values of G_{i}^{2} (calc.), calculated with the final parameters, are given in Table 2, where they are compared with G_{i}^{2} (obs.). Considering that the intensities were estimated visually from photographs, the agreement is excellent. The conventional reliability factor R, as applied here to the G^{2} rather than to structure factors, i.e.

$$
\begin{equation*}
R=\frac{\sum_{i}\left|\Delta G_{i}^{2}\right|}{\sum_{i} G_{i}^{2} \text { (obs.) }}, \tag{10}
\end{equation*}
$$

calculated for all observable lines except the last five, has a value of $0 \cdot 108$. This corresponds to a value of about 0.05 in the structure factors; the value of R calculated from the structure factors for the twentynine non-degenerate lines was found to be 0.050 . The excellence of agreement is presumably due to two main causes: (1) the atoms in the crystals are nearly all of the same kind, so that form-factor errors can be largely compensated for by adjusting the temperature factor; and (2) the visual estimation of the integrated intensity of a line is probably capable of greater precision than the visual estimation of the integrated intensity of a spot obtained on a single-crystal photograph. In single-crystal work, with visual estimation of intensities, R as calculated from the structure factors is seldom less than $0 \cdot 10$ or $0 \cdot 12$.

The distances between adjacent atoms are given in Table 3. The functional dependence of the distance on the two parameters was taken properly into account in calculating the standard deviations of these distances.

Bond to atom	Number of bonds	$D(\AA)$	$\sigma(\AA)$
$\begin{aligned} & \text { A. Bonds involving } \mathrm{Zn}_{\mathrm{I}}(0,0,0) \\ & \mathrm{Zn}_{I I}(0, y, z) \end{aligned}$	12	$\cdots \cdot 659$	0.003
B. Bonds involving $\mathrm{Zn}_{\text {II }}(0, y, z)$			
$\mathrm{Zn}_{\text {II }}\left(0, z, \frac{1}{2}-y\right)$	2	-2.571	0.004
$\mathrm{Zn} \mathrm{I}_{1}(0,0,0)$	1	$\cdots \cdot 659$	0.003
$\mathrm{Zn}_{\text {II }}\left(z, \frac{1}{2}-y, 0\right)$	2	- $2 \cdot 68$	0.006
$\mathrm{Zn}_{\text {II }}(z, 0, y)$	4	2.764	0.003
$\mathrm{Zn}_{\text {II }}(0, y, \bar{z})$	1	2.929	0.007
$\mathrm{Na}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	2	3.569	0.002
C. Bonds involving $\mathrm{Na}\left(\frac{1}{4}, \frac{1}{4}\right.$, $\mathrm{Zn}_{\text {II }}(0, y, z)$	24	3.569	0.002

Discussion of the structure

Part of the structure, showing the environments of the Na and Zn_{I} atoms, is shown in Fig. 1, and the
environment of a $\mathrm{Zn}_{\text {II }}$ atom is shown in Fig. 3. The Na and Zn_{I} atoms, taken by themselves, are in the cesium chloride arrangement. They are surrounded by $\mathrm{Zn}_{\text {II }}$ atoms, which form nearly regular snub cubes

Fig. 1. Drawing of part of the NaZn_{13} structure, showing the environment of atoms $\mathrm{Z} n_{I}$ and Na , and showing the $\mathrm{Zn}_{\mathrm{I}}-\mathrm{Zn}_{\text {II }}$ distance.

Fig. 2. Parameter plot for NaZn_{13}, showing the line corresponding to a regular icosahedron, the point corresponding to a 'regular' snub cube, and the parameters actually obtained in the previous and present investigations.

Fig. 3. The environment of Zn_{Π}, with interatomic distanees. For the $\mathrm{Zn}_{\mathrm{I}}-\mathrm{Zn}_{\text {II }}$ distance, see Fig. 1.
around the Na atoms and nearly regular icosahedra around the Zn_{I} atoms. Each icosahedron is surrounded cubically by, and shares triangular faces with, eight snub cubes, four of which (tetrahedrally arranged about the icosahedron) are right-handed and four (in the opposite tetrahedron) are left-handed. Each snub cube shares triangular faces with eight icosahedra, which are all identical but which alternate in orientation. Between each pair of adjacent icosahedra there is a tetrahedron of $\mathrm{Zn}_{\text {II }}$ atoms, which shares an edge with each of the two icosahedra. Each right-handed snub cube is surrounded octahedrally by six left-handed snub cubes, with which it shares square faces.

For a regular icosahedron y and z are constrained by the relation

$$
\begin{equation*}
y=\frac{1}{2}(1+\sqrt{ } 5) z=1 \cdot 618 z . \tag{11}
\end{equation*}
$$

A regular snub cube (i.e. one with all edges equal) requires the unique values

$$
\begin{equation*}
y=0.1761, z=0.1141 \tag{12}
\end{equation*}
$$

obtained by solution of the equations

$$
\begin{equation*}
z=\frac{\frac{1}{4}-y}{1-2 y}=y-2 y^{2}, \tag{13}
\end{equation*}
$$

which are incompatible with the condition (11) for a regular icosahedron. Hence there exists no set of parameters y and z for which both the icosahedron and the snub cube are regular. For general values of y and z each icosahedron has edges of two different lengths, six of which, of one length, are bisected by twofold axes of the structure, while the remaining twenty-four, of the other length, bound the eight triangular faces which are shared with snub cubes; each snub cube has edges of three different lengths, twenty-four of one length bounding the six square faces, twenty-four of another length bounding the eight triangular faces shared with the icosahedra, and twelve of the third length.

In Fig. 2 conditions (11) and (12) are plotted on a parameter map together with the parameter values reported for NaZn_{13} by Zintl \& Hauke, those reported for KCd_{13} by Ketelaar, and those determined for NaZn_{13} in the present investigation. The uncertainties are indicated by the radii of circles drawn around the points determined by the parameter values; since Zintl \& Hauke reported no uncertainty value, the uncertainty reported by Ketelaar (0.003) was assumed. It is seen that the parameter values obtained in the present work lie between those of Zintl \& Hauke and those of Ketelaar, and that they differ considerably from the values required either by a regular icosahedron or by a regular snub cube.

With the parameters found in the present investigation, the distance from Zn_{I} to each of the twelve $\mathrm{Zn}_{\text {II }}$ around it is $2 \cdot 659 \AA$. This value is very close to the value $2 \cdot 660 \AA$ found for the six shorter
ligates around a given zinc atom in the elementary metal. It has been assumed (Pauling, 1949) that these six ligates represent half-bonds, and that the six longer ligates $(2.907 \AA)$ represent one-sixth bonds, the valence of zinc in the element thus being $4 \cdot 0$. It would therefore seem reasonable to assume that in NaZn_{13} the $\mathrm{Zn}_{1}-\mathrm{Zn}_{I I}$ bonds are half-bonds and that accordingly the valence of Zn_{I} is 6.0 . The single-bond radius that has been assumed for sexivalent zinc, however, is $1 \cdot 176 \AA$, which is considerably shorter than the value assumed for quadrivalent zinc, $1 \cdot 229 \AA$, in consequence of a larger amount of d character of the bond orbitals. This shorter radius is not consistent with the bond number one-half, which is necessary for a valence of six for Zn_{I}. It is instead found by trial that the interatomic distances are compatible with the valence 5 for Zn_{I} and 4 for Zn_{Π}. The values for the single-bond radius for zinc atoms with valence 5 and 4 are $1 \cdot 202$ and $1 \cdot 229 \AA$, respectively (Pauling, 1949). Values of the bond numbers n calculated from the observed interatomic distances by means of the equation

$$
\begin{equation*}
R(n)=R(1)-0.600 \log n \tag{14}
\end{equation*}
$$

are 0.649 for the $\mathrm{Zn}_{\text {II }}-\mathrm{Zn}_{\text {II }}$ bonds with length $2.571 \AA$ (2), 0.424 for $2 \cdot 682 \AA$ (2), 0.309 for $2 \cdot 764 \AA$ (4), and 0.164 for $2.929 \AA(1)$, and also 0.417 for the $\mathrm{Zn}_{\mathrm{I}}-\mathrm{Zn}_{\text {II }}$ bonds, which have length $2.659 \AA$, and 0.053 for the $\mathrm{Zn}_{\text {II }}-\mathrm{Na}$ bonds, with length $3.569 \AA$. The twelve bonds with bond numbers 0.417 lead to the valence 5.00 for Zn_{I}, exactly the value assumed. The sum of the bond numbers for the twelve bonds formed by the Zn_{\Perp} atom is 4.07 , satisfactorily close to the assumed value 4.00 . The valence obtained for sodium, 24×0.053. is $1 \cdot 27$. The excess over unity may be only apparent, and indicate a small compression of the bonds, or it may be real, and due to electron transfer (Pauling, 1950).

Hence, the interatomic distances indicate that the $\mathrm{Zn}_{\text {II }}$ atoms are quadrivalent and the Zn_{I} atoms are quinquevalent (corresponding to equal resonance between the quadrivalent electron configuration and the sexivalent configuration). The increase in single-bond radius from $\mathrm{Zn}_{\text {I }}$ to $\mathrm{Zn}_{\text {II }}$ combines with the decrease in bond number from the $\mathrm{Zn}_{\mathrm{I}}-\mathrm{Zn}_{\text {II }}$ bonds to the $\mathrm{Zn}_{\mathrm{II}}-\mathrm{Zn}_{\mathrm{II}}$ bonds that mark the edges of the icosahedron to produce the characteristic 5% difference in length between the radius and the edges of the regular icosahedron.

The brittleness of these intermetallic compounds suggests an electronic structure involving a filled Brillouin zone. It was pointed out by Ketelaar (1937) that the strongest reflection, that of form 531, corresponds to a Brillouin polyhedron for which the inscribed sphere has a volume of 217 electrons per unit cube, which agrees well with the value 216 calculated on the assumption that the sodium atom is univalent and the zinc atoms are bivalent; that is, calculated in the usual Hume-Rothery way. It has also been
shown (Pauling \& Ewing, 1948) that the number of valence electrons per unit cell obtained by summing the new metallic valences often agrees strikingly well with the number of electrons required to fill completely a Brillouin polyhedron corresponding to some set of forms with large structure factors; good agreement was found for the γ alloys, β manganese, α manganese, and other structures.

For NaZn_{13} the polyhedron 531 corresponds to electron number $238 \cdot 2$. When truncated by 600 and 442 , which are also strongly reflecting forms, the electron number becomes $224 \cdot 38$, slightly larger than the volume of the inscribed sphere and the electron number given by the ordinary valences for NaZn_{13}, 216 , but in good agreement with that for $\mathrm{CaZn}_{13}, 224$. The next form giving very strong reflections is 800 . It is truncated by several other forms that reflect strongly, of which 444 is the most important. The polyhedron formed by 800,444 , and 640 has an electron number of $428 \cdot 48$. The only other moderately strongly reflecting form in this region is 642 , which has, however, only a very slightly truncating action, which would reduce the electron number to $428 \cdot 02$. Both of these polyhedra are satisfactory, in that the ratio of maximum radius to minimum radius is close to unity, being only $1 \cdot 17$; the polyhedron accordingly does not deviate greatly from sphericity. The value 428 for the electron number given by the Brillouin polyhedron is close to that corresponding to the valences reported above; the sum of the valences, assuming 5 for $\mathrm{Zn}_{\mathrm{I}}, 4$ for $\mathrm{Zn}_{\mathrm{II}}$, and l for Na , is 432 . Exact filling of the zone would be obtained by taking the valence of Zn_{\amalg} as $3 \cdot 94$, instead of $4 \cdot 00$.

Potassium compounds

Measurements of our powder photographs of KZn_{13} and KCd_{13} gave $a_{0}=12 \cdot 360 \AA$ for the former and $a_{0}^{0}=13.803 \AA$ for the latter, in both cases without least-squares refinement, and with a standard deviation of about $0.005 \AA$. These values are in good agreement with those previously reported by Zintl \& Hauke and by Ketelaar. The lattice constant for KZn_{13} is only 0.6% larger than that for NaZn_{13}, while that for KCd_{13} is about 12% larger than those for the two zinc compounds. The ratio of the lattice constants for KCd_{13} and KZn_{13} is in fact $1 \cdot 117$, which is very close to the ratio, $1 \cdot 119$, of the atomic radii of cadmium and zinc for coordination 12. Hence it appears that if the y and z parameters for KCd_{13} and KZn_{13} are the same as for NaZn_{13}, as is probably true to a close approximation, the situation regarding bonding and valency is essentially the same for the cadmium atoms in KCd_{13} and for the zinc atoms in KZn_{13} as it is for the zinc atoms in NaZn_{13}.

We thank Mr Jack Inman for assistance in preparing the compounds, and Mrs Nan Arp and Miss Linda Pauling for assistance with the calculations.

References

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
James, R. W. \& Brindley, G. W. (1935). International Tables for Crystal Structure Determination, p. 571. Berlin: Borntraeger.
Ketelaar, J. A. A. (1937). J. Chem. Phys. 5, 668.
Nelson, J. B. \& Riley, D. P. (1945). Proc. Phys. Soc. 57, 160.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 546.

Pauling, L. (1949). Proc. Roy. Soc. A, 196, 343.
Pauling, L. (1950). Proc. Nat. Acad. Sci., Wash. 36, 533.

Pauling, L. \& Ewing, F. (1948). Rev. Mod. Phys. 20, 112.

Whittaker, E. T. \& Robinson, G. (1937). The Calculus of Observation, chap. 9. London: Blackie.
Zintt, E. \& Hauke, W. (1937). Nature, Lond. 25, 717.
Zintl, E. \& Hauke, W. (1938). Z. Elektrochem. 44, 104.

The Crystal Structure of L-Glutamine

By W. Cochran and Bruce R. Penfold*
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 12 March 1952)

Abstract

The crystal structure of L-glutamine has been determined by means of electron-density projections on the (001) and (010) planes. The (001) projection was solved by direct sign-determining methods which are described. A direct indication is obtained from a map of ($\varrho_{o}-\varrho_{c}$) of the positions of all the hydrogen atoms. Bond lengths have been measured with a standard deviation of $0.024 \AA$ and are compared with those in related structures. A correlation between the double-bond character of the $\mathrm{C}-\mathrm{N}$ bond of the amide group and the reactivity of this group in glutamine and acetamide is pointed out. Cohesion of the crystal is provided by five hydrogen bonds per molecule (the maximum number possible) extending in three dimensions and in each case linking a nitrogen and an oxygen atom.

1. Introduction

Glutamine, the γ-amide of glutamic acid, is of great biological importance. It occurs in the free state and as part of the protein structure in plants and animals, and plays an essential part in many metabolic processes. Its physiological roles have been extensively studied (Archibald, 1945). Considered simply as a chemical compound it has unusual properties, and its crystal-structure analysis was undertaken mainly with a view to providing information which might help to throw light on these characteristics. The amide group is uniquely labile, being rapidly hydrolysed in buffered solutions and being decomposed by nitrous acid in conditions under which all other amides are unchanged (Plimmer, 1925; Taylor, 1930). Hydrolysis leads to the formation of the five-membered lactam ring compound pyrrolidone-carboxylic acid. Neither this reaction nor the highly reactive nature of the amide group in general have been accounted for satisfactorily and it is desirable that the configuration and dimensions of the molecule should be determined as accurately as possible before an attempt is made to explain these chemical features. The analysis may also be regarded as a contribution to the more general study of amino-acid structures. The method by which

[^1]the structure was solved is of considerable interest in itself as no assumptions were made as to the configuration of the molecule. This direct method is described in some detail.

2. Experimental

The material used was kindly supplied by Dr R. G. Westall of the Cambridge Low Temperature Research Station. It was in the form of a white powder and contained less than 1% impurity. Recrystallization from water at a temperature between 0 and $5^{\circ} \mathrm{C}$. produced semitransparent needles up to 1.5 mm . long and with maximum mean diameter of cross section 0.2 mm . Elongation was in the direction of the short crystallographic axis.

Crystallographic and physical data

L-Glutamine $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{2}$; m.p. 184-185 ${ }^{\circ}$ C.; orthorhombic,

$$
a=16.01, b=7 \cdot 76, c=5 \cdot 10 \AA(\text { all } \pm 0.3 \%)
$$

Absent spectra: $h 00,0 k 0,00 l$ when h, k, l respectively is odd. Space group $P 2_{1} 2_{1} 2_{1}$. Four molecules per unit cell. Density (calc.) $=1.52$ g.cm. ${ }^{-3}$, density (obs.) $=$ $1.54 \mathrm{~g} . \mathrm{cm} .^{-3}$. Absorption coefficient for $\mathrm{Cu} K \alpha$ radiation $\mu=12 \cdot 2 \mathrm{~cm} .^{-1}$.
$\mathrm{Cu} K \propto$ radiation was used throughout, and complete

[^0]: * Work done in part under Contract N6onr- 24432 between the California Institute of Technology and the Office of Naval Research, and in part under a program of research on metals sponsored by the Carbide and Carbon Chemicals Corporation.

 Contribution No. 1656 from the Gates and Crellin Laboratories.
 \dagger Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

[^1]: * Now at Canterbury University College (University of New Zealand), Christchurch C.1, New Zealand.

